
The Routerlab - Emulating Internet Characteristics in a Room
Amir Mehmood, Oliver Hohlfeld, Dan Levin, Andreas Wundsam,Florin Ciucu, Fabian Schneider, Anja Feldmann
Deutsche Telekom Laboratories, Technische Universität Berlin
{amirjoliverjdlevinjandij�orin jfabianjanja}@net.t-labs.tu-berlin.de

Ralf-Peter Braun
Deutsche Telekom Laboratories
{ralf-peter.braun}@telekom.de

Abstract

Designing infrastructures for automatically conducting controlled, reproducible Internet experiments poses sub-
stantial challenges. These include modelling the Internetstructure in a useful way, and providing suf�cciently
Internet-like traf�c.
In this paper we describe a multi-purpose experimental platform, called Routerlab, enableing complex Internet
measurement experimentation. Departing from the approachtaken by many popular testbeds, the Routerlab is a
router centric, customizable testbed that re�ects the macroscopic structure of the Internet, with different clouds
and tier levels and simulation of differing access properties via network emulation. This, in combination with a
�exible traf�c generation framework, enables us to conduct Internet-level experiments on a small scale, within the
borders of our server room.
Routerlab's management platform calledLabtool supports heterogeneous hardware landscapes and user groups
(e.g., labcourse student teams, individual researchers working on differing layers, developers). To accomodate
the span of differing requirements of these user groups, it offers both virtualized and bare-metal, non-virtualized
resources and can support versioned, controlled changes tothe physical topology.

1 Introduction

Over the last three decades, the tremendous increase
in the size of the Internet has necessitated the devel-
opment of increasingly complex network protocols and
con�guration tools for its management. Accordingly, it
is increasingly important to explore the effects of pro-
posed design choices for theFuture Internet, and si-
multaneously be able to predict the reaction of today's
Internet to any changes. To this end, there exist many
theoretical models, simulations, and testbed environ-
ments, each with particular strengths and applicabili-
ties, which all depend on the ability to abstract away
the Internet's complexity.

Theoretical models like network queueing theory are
important for understanding fundamental properties
of these networks, and simulations can be used to
model and understand giant networks at scale and un-
der complete control. However, both approaches can-
not directly handle the full complexity of real world
networks, and require modeling abstractions to make
problems tractable. Accordingly, they require veri�ca-
tion of the results with real hardware.

Testbeds offer solutions to deal with the limitations
imposed by theoretical models and simulator environ-

ments. The main bene�t which testbeds provide is to
expose the experiment to the realities of existing net-
working hardware and software, including the effects
of device implementation details and bugs, timing is-
sues, and physical layer conditions (e.g., wireless con-
nection quality), all of which are typically abstracted
away by analytical models and simulators. Testbed ex-
perimentation is thus essential for validating the sim-
pli�cations made by theoretical models and simulators,
and to gain further insight into the behavior of real sys-
tems. Moreover, methodology and con�gurations from
testbed experimentation are typically more easily trans-
ferable to real-world deployments, as identical or simi-
lar hardware is used.

However, due to resource constraints, testbeds typically
must operate on a much smaller scale than the Internet.
Accordingly, it remains a challenge to understand the
Internet at large, with its multi-tier structure and de-
centralized organization in many differentautonomous
systems(AS) with millions of hosts from a multitude
of vendors, running diverse software implementations
and con�gurations. This translates into the necessity
for testbeds to closely reproduce relevant network char-
acteristics of interest, while respecting the limitations
of available resources.



Along these lines, this paper describes a testbed called
Routerlab[5]. The Routerlab is a customizable,router
centric testbed, re�ecting the macroscopic structure of
the Internet. Like many other testbeds, it is com-
posed of commodity switches, routers, load-generating
servers, and network path emulators (e.g., for emulat-
ing DSL access line characteristics), all from multiple
vendors. To re�ect the Internet's structure on a minia-
ture scale, its devices are organized into several, hierar-
chical and semi-isomorphic clouds that are connected
using a variety of different electrical and optical con-
nections, depicted in Figure 1. This allows an experi-
ment to comprise emulated end-user access lines, edge
level routers, AS'es, and a high speed forwarding core,
using real hardware.

Figure 1: Routerlab Cloud Topology

A key component ofRouterlabis its software man-
agement system, calledLabtool, which allows multi-
ple users to deploy their topologies, swap, and redeploy
experiment con�gurations for easy reuse. It supports a
heterogeneous hardware landscape and simultaneous,
isolated experimentation by different user groups (e.g.,
labcourse student teams, individual researchers work-
ing on differing layers, developers). It further allows
the use of multiple operating systems in real and vir-
tualized environments. Other experimental features in-
clude Internet-like traf�c generation, network emula-
tion, and also tools for exact traf�c measurements and
infrastructure to monitor and collect experimental data.
The experiment execution environment fully supports
automation and experimental data analysis. Further-
more, the extensible design of the testbed allows the
study of various different protocols, applications, and
scenarios under different networking conditions with-
out requiring deployment in the real Internet. When
changes to the physical topology are necessitated, the
Labtool tracks these in a versioned history.

This feature set differentiatesRouterlab from other
popular testbed platforms, which are largely switch
centric and assume a �xed, unchanging physical topol-

ogy. Several important challenges are associated with
Routerlab's router centric approach, including (a) inter-
action with theheterogeneous hardware landscape, in-
cluding shareable and non-shareable, virtualizable and
non-virtualizable resources, (b) accommodation of a
large range of different user groups with widelydif-
fering use requirements, spanning user-space to kernel-
space, and (c) ensuring isolation between experiments
running in parallel, and thus providing reproducible re-
sults required for research.
Our paper continues with a presentation of several use-
cases to motivate discussion of the design decisions
of Routerlab. We provide an overview of existing
testbeds, and compare them to our approach. We then
detail the architecture and design of Routerlab, dis-
cussing associated challenges, and �nally highlight ex-
perimental traf�c generation conducted in the lab.

2 Use Cases

The presented testbed enables research in various
�elds. We are particularly interested in the following
use cases, which are currently deployed in the Router-
lab and used for active research.
HAIR [14] is a clean slate routing architecture that
tackles the problem of routing table growth, restricts
the visibility of routing updates, and inherently sup-
ports traf�c engineering, mobility, and multipath.
HAIR separates locators from identi�ers. The routing
and mapping system rely on a hierarchical scheme that
leverages the structure of today's Internet. A prototype
implementation was evaluated within the framework of
the Routerlab, requiring a router-centric testbed design
and making use of the tier-oriented architecture of the
Routerlab.
While Future Internet ideas promise great value, de-
ployment and adoption of new networking ideas to
the Internet have proven to be problematic in recent
years. Virtualization , and in particularVirtual Net-
works [18] are considered key enablers for deploy-
ment of Future Internet ideas [7]. They allow multi-
ple network instances to co-exist on a common phys-
ical network infrastructure. In addition to the secu-
rity properties offered by VPNs, virtual networks al-
low for completely isolated network instances, that can
run custom network protocols and routing, may have
bandwidth guarantees. The presented testbed is a key
element in the evaluation of virtual networks and cur-
rently runs the prototype proposed in [18]. This ex-
periment setup makes heavy use of the �exibility of-
fered by the Routerlab, combining centralized storage
and automatically managed network components, but
also bare-metal resources managed by the experiment
itself. These are used to run performance tests with cus-
tomized virtualization techniques (e.g., based on XEN
and KVM), while virtualized resources are used for de-
velopment.



An emerging link virtualization technology, Open-
Flow [15] introduces innovative �ow switching pos-
sibilities into future networks. As in virtual networks
according to [18],OpenFlow can be used to sepa-
rate physical networks, allowing for experiments to be
staged in productive networks. The Routerlab is par-
tially OpenFlow enabled and used for ongoing research
on OpenFlow.

Moreover, virtual networks allow innovative applica-
tions, e.g., concerning troubleshooting, debugging and
safe upgrades to network components [23]. For in-
stance, multiple versions of the same component or
software can be run onMirrorNets in parallel virtual
networks and a comparison of their behavior can shed
light into possible bugs or performance implications.
An experiment showcasing the key concepts, based on
the mentioned virtualization framework and OpenFlow,
was presented at SIGCOMM 2009 [24].

In recent years, a set ofRouter Buffer Sizing schemes
have been proposed that challenge the prevalent rule-
of-thumb applied in the dimensioning of Router buffer
sizes, i.e., Router buffers being dimensioned accord-
ing to the Bandwidth delay product. Given the tremen-
dous growth of bandwidth on the Internet, the rule-
of-thumb formula raises practical concerns in terms of
memory usage. The current growth in bandwidth de-
mand creates a dilemma: On one hand, high capacity
links are only possible in the optical domain. On the
other hand, memory requirements on the line cards ad-
hering to the rule of thumb are not possible in the op-
tical domain, due to lack of large hardware buffer im-
plementation [11]. Also it is largely acknowledged that
buffer resizing of linecards can have negative implica-
tions on the overall network performance, in particular
on QoE factors. Therefore, sophisticated evaluations of
existing and novel buffer sizing schemes are needed for
their practical validation. In addition to these use cases,
research areas such as1–10Gbps Packet capturingre-
quire dedicated hardware access [19]. For this purpose,
there is a need for not only generating representative
traf�c at very high speed but also for infrastructure that
can capture and monitor those packets.

As more and more Internet Service Providers integrate
voice and video products into their product portfolio,
the Quality of Experience describing the subjective
service quality becomes a key element in the success
of upcoming services. The Routerlab testbed presents
an experimental platform allowing the study of in�u-
ences of network parameters on the subjective service
quality.

Moreover, we use the testbed as ateaching environ-
ment on a yearly basis. In this course, we invite stu-
dents to take part in putting the important pieces of the
Internet together. In this way, students get hands-on ex-
perience, and accesss to hardware that is typically only
available at large network operators.

3 Testbed landscape

There are numerous frameworks available for building
testbed networks. We now discuss their similarities and
differences from our setup in the Routerlab.

Academic Testbeds Globally, PlanetLab [9] is
probably the most successful and widely deployed
testbed platform in existence. Led by a Princeton ini-
tiative, it consists of several thousand virtualized nodes
connected via the Internet. Users can request groups of
virtualized guest nodes (called slices).
VServer, a Linux kernel extension, is used as virtu-
alization platform. As a container based single OS
approach, the virtualization provided by VServer is
light-weight and performant, but restricted to user level
guests – there is no possibility for an experimenter
to run custom operating systems or adapt the running
kernel to their requirements. Performance isolation is
limited: The performance of any given slice can be
severely impacted if other slices cause heavy load.
The network is not virtualized at all in PlanetLab. In-
stead, every host has but one global IP address that
is shared between all the clients. Connection qual-
ity varies according to the utilization of the underly-
ing Internet connections. These properties make Plan-
etLab ideal for testing application level or overlay ap-
plications under Internet conditions, but less suited to
reproducible experimentation, or for applications that
require changes to the OS kernel. The PlanetLab
framework assumes a pure PC based infrastructure, and
does not support interaction with enterprise networking
hardware such as routers and switches.
VINI [10] an extension to PlanetLab, adds network vir-
tualization capabilities to PlanetLab, allowing the user
to specify virtual topologiesbetween their reserved
nodes, that are set up via tunnels between the substrate
nodes. First running as PlanetLab guest via User Mode
Linux, the network virtualization was later moved to
the substrate via Trellis [12]. The Of�cial VINI nodes
run in Internet2 locations with good connectivity, re-
ducing cross-slice traf�c congestion. It is still limited to
userspace guests and does not support interaction with
Enterprise networking hardware.
Emulab [21] is a testbed management framework
geared towards local, tightly connected testbeds. It
features experiment lifecycle management and can au-
tomatically provision and con�gure different kinds of
networking hardware. Custom experimental topologies
are supported via VLANs con�gured on the underlying
physical network. Emulab does not currently support
organized custom rewiring and assumes a switch cen-
tric network. Routerlab, in contrast, is a router centric
network and management framework, mirroring the sit-
uation in the macroscopic Internet.
Orbit [16] is a wireless testbed at Rutgers University.
The accompanying management framework is speci�-



cally geared towards the properties of wireless experi-
ments. In the wireless domain, isolation is tricky due to
the realities of the wireless transmission medium, forc-
ing concurrent experiments to be separated in spectrum
or physical space. It does not focus on virtualized net-
works or interaction with enterprise networking hard-
ware.
The OpenNetwork Laboratory [22] is a testbed and
management framework built around special purpose
programmable network processors. It has GUI support
for con�guring and provisioning experiment topolo-
gies. It also has been extended to support management
of other enterprise networking hardware. It assumes a
switch-based backbone connecting the individual com-
ponents, and does not support custom cabling at this
point.

National/international testbed initiatives There is
a growing awareness of the importance of large-scale
testbeds in the research community. As such testbeds
require substantial �nancial resources to build and
maintain, they are typically hard to sustain by a single
research group. Thus, many initiatives to build larger,
federated testbeds have formed in recent years.
GLab [3], a German national testbed initiative, aims at
building a large scale federated testbed for repeatable
networking experiments. Its �rst prototype currently
runs on PlanetLab technology, limiting its use to exper-
iments supported by this platform.
GENI [2], an American initiative, aspires to build a
large-scale comprehensive testbed infrastructure, in a
spiral based development approach. The current spiral
focuses on extending and federating existing platforms
like PlanetLab, Emulab, and OpenFlow. Accordingly,
there is not yet a consistent GENI architecture, but
differing approaches by the individual research groups
that are converging.

Summary Compared to the existing testbeds and
frameworks, our approach provides a router-oriented,
yet �exible testbed that is customizable down to the
physical layer. Accordingly, we also require a custom
solution that exposes this �exibility to the end users.

Figure 2: Logical Hardware Architecture

4 Hardware infrastructure

The Routerlab hardware infrastructure is designed to
maximize device availability, utilization, and ease of
expansion. In order to support a diverse network en-
vironment, our infrastructure is designed with vendor
neutrality in mind. Toward these goals, the hardware of
Routerlab is made up of devices for experimentation as
well as dedicated management hardware to support and
provide access to the experimentation hardware. The
complete hardware infrastructure of the Routerlab can
be organized into the three layers depicted by Figure 2
and realized in Figure 3.

4.1 Foundation

The foundation management hardware supports the
most fundamental services for the Routerlab, includ-
ing the means by which the rest of Routerlab is kept
separate – but also accessible from the Internet. This
separation is essential, as high volumes of experimen-
tal traf�c which may be generated within the Router-
lab must be kept from entering the public Internet. At
the same time, traf�c such as software package down-
loads from public repositories or data collected on ex-
perimental devices must be permitted to pass freely into
and out of the Routerlab respectively. To this end, the
foundation hardware utilizes a tightly controlled gate-
way server to �lter and regulate these types of traf�c.
This server furthermore provides a virtual host acting
as a stepping stone, through which users must authenti-
cate before logging into the experimental devices from
the public Internet. The gateway server provides a con-
venient platform for running other basic services within
both the internal Routerlab network and the public In-
ternet. These includedirectory services, a web based
information and monitoring platform, andnetwork in-
frastructure services, such as DNS, NFS, NTP,storage
resources, andOS virtualizationfor isolation of user-
accessible services from back-end services such as au-
thentication, monitoring of all infrastructure services,
a full on-site data backupsolution, and other security-
related systems.

Figure 3: Physical Architecture



4.2 Management hardware

The middle architectural layer provides direct support
to the experimental hardware within the isolated inter-
nal environment ensuring availability and uniformity of
access. The Routerlab management hardware includes
Gigabit Ethernet management switches, SNMP en-
abled power sockets, and serial console servers, provid-
ing network connectivity, remote power cycling ability,
and console access to all experimental devices. These
management devices ensure that all experimental de-
vices can be reached for interaction, or rebooted by
users in a consistent and familiar way, without the need
for physical access to the experimental devices – even
when the devices themselves do not feature integrated
out-of-band management features.

4.3 Experimental hardware

In order to support the wide spectrum of requirements
that results from the research work in the group, the
Routerlab experimental hardware landscape consists of
a multitude of different devices from several different
classes. It contains commercialrouters, classical Eth-
ernet switches, OpenFlow switches, programmable net-
work hardwarebased on NetFPGA, andgeneral pur-
pose servers, see Table 1. These devices are grouped
into two different areas, anInternet oriented, router-
centric area, and aSwitch centric, general research
area.
This heterogeneous hardware landscape poses signi�-
cant challenges to the management platform. For in-
stance, some of these devices can be safely shared be-
tween experimenters and used through controlled In-
terfaces. This includes virtualized servers, infrastruc-
ture services, such a storage, and some switches. Other
devices, e.g., classical routers, can only be assigned
exclusively, and need to be time-multiplexed between
competing experimenters.
Each type of devices offers a unique set of in-band
and out-of-band administration facilities. Some offer
lights-out managementcapabilities to enable remote
administration, while others don't. In these cases, we
rely on external management hardware, e.g., SNMP
controlled power sockets and terminal servers to pro-
vide control interfaces. All control interfaces are then
abstracted and uniformly presented to the user by the
management platform.
The links between switches, routers, and load-
generating servers can be de�ned both through phys-
ical cabling but also logically via the VLAN con�gu-
ration of the experimental switches – con�gurable via
our software management system. This �exibility al-
lows for the quick and repeatable deployment of com-
plex, tiered topologies made up of modular elements as
that pictured in Figure 4, many of which may further be
software de�ned – especially in the case of topologies
utilizing OpenFlow based routing.

Figure 4: Constellation Experimental Topology

4.4 Resource sharing between testbeds

The vendor-agnostic management layer installed in the
Routerlab increases our testbed �exibility by allowing
us to easily integrate hardware from other testbed en-
vironments. The Routerlab shares a number of exper-
imental devices with other testbeds, which introduces
the challenge of integrating external experimental hard-
ware into the Routerlab in a uniform fashion, yet still
allowing for separation of resources when each testbed
must function independently. Our management hard-
ware in conjunction with our software management
tool enables us to �exibly share devices, and to quickly
reassign devices according to the current load on the
testbeds.

5 Labtool software management

The Labtool software management system lies at the
heart of the Routerlab, sitting atop the foundation hard-
ware infrastructure, and serves as the primary inter-
face through which users of the Routerlab reserve and
simultaneously interact with their experimental hard-
ware. The Labtool is experiment-centric, in that it or-
ganizes all of its functionality around the management,
con�guration, and repeatable deployment of experi-
mental topologies and device con�gurations. The soft-
ware architecture of the Labtool utilizes a three-layer
client, server, and database structure, and is built to be
extendible and scriptable with a client API in Ruby. In
this section, we begin by stepping through the key fea-
tures. Then we look a bit further into the software in-
ternals of the Labtool. Finally, we step through user
experience of setting up and executing an experiment.

5.1 User features

Experiment life cycle management: The Labtool
maintains an experiment-level view of all the actions it



Type Vendors Technologies Shareable Virtualized OBMz
Classical Switch Cisco, HP, Linksys IOS, 1Gb/s FX/TX � no �
OpenFlow Switch HP, Quanta, NEC OpenFlow no no no
Router Cisco, Juniper IOS, JUNOS, 1Gb/s, FX/TX no no no
Server Sun, Other x86, Opteron, NetFPGA � on demand �

Table 1: Routerlab experimental hardware (� : partially,z: Out-of-Band Management)

performs. In concrete terms, this means that devices,
the physical and virtual links connecting them, and
their individual con�gurations are kept related in the
underlying database schema. This allows for easier hi-
bernation, migration, and restoration of any particular
experimental setup.
Physical topology versioning: The Labtool keeps
track of all custom cabling changes over time and
across experiments. Versioned cabling enables Router-
lab administrators to alter and reliably restore topology
changes.
Boot-mode con�guration with imager system: An
experiment performed on one set of devices should
be repeatable on another set of suitably similar de-
vices. To this end, the Labtool allows experimental
device con�gurations for a given device to be rede-
ployed onto any suf�ciently similar device. In the case
of traf�c-generating servers, individual disk partitions
or full hard disk device images may be archived or re-
stored by the Labtool imager system from any server
to any server. The Labtool provides a collection suit-
ably hardware-agnostic base operating system images
which facilitate quick deployment of OS experimental
environments.

5.2 Labtool software internals

In order to realize these features, the Labtool integrates
a collection of modular components and presents them
via a uniform client interface. These components are
implemented largely in Ruby and Perl in a three-tiered
server daemon, database back-end, and client archi-
tecture. The �rst software component handles device
reservation management, calculates reservation times-
lots, and prevents con�icts from arising between users
running multiple experiments. The next component
of the Labtool is the imager system, which encom-
passes a set of tools to automatically backup or restore
a particular hard drive partition or full disk. The im-
ager makes uses of a NFS-based storage system, from
which a network-bootable Linux OS image can be de-
ployed on any traf�c-generating server. From this im-
age, incremental �le-system backups can be made to
and restored from the NFS storage pool. Another core
component implements the device interaction functions
which provide power-management and diagnostic con-
sole access. These components also help lay the foun-
dation for a separate experiment automation process we

have under development, which supports further co-
ordinated execution and collection of data distributed
across multiple experimental devices.

5.3 End-user experience

The process of utilizing the Routerlab begins with
the user authenticating against – and logging into the
stepping-stone server as depicted by step 1 in Figure
3, from which the Labtool client can be invoked. The
user may then invoke the Labtool to create a new ex-
periment or reload a previously saved experiment. In
the event that the user reloads a previously de�ned
experiment, once the necessary devices become free,
the user can immediately begin to log into and inter-
act with the experimental devices via the management
network depicted by step 2. Otherwise, experimental
devices are picked out for the experiment and a times-
lot is reserved by the user, often in advance, for their
use. Each Labtool experiment encompasses a collec-
tion of speci�c experimental devices, the full physi-
cal cabling topology de�ned by the selected devices,
and the complete device con�guration for each device.
All of these elements are represented in the relational
database back-end of the Labtool system. The Labtool
database is consulted to obtain the appropriate device
con�gurations for each device in the active experiment,
shown by step 3. As the user conducts the experiment,
she may interact with the devices through the Labtool
without needing to know any of the details of the un-
derlying management network. For example, in the
event that a user wants to powercycle a device, it suf-
�ces to issue the Labtool powercycle command which
requires knowledge only of the device name. The ap-
propriate SNMP directives are issued to the appropriate
power source for the appropriate hardware device. In-
teractive console access and con�guration management
proceeds similarly over the course of the experiment,
depicted by step 4. The experimental devices may all
be driven and coordinated from the login server, upon
which all the experimental data may be collected, once
the actual experiment has �nished.

6 Traf�c generation

The biggest challenge of emulating the Internet is to
feed the actual hardware of Routerlab with traf�c that
is qualitatively identical to that observed in the provider
networks. In the real Internet, users send requests to



different application servers which are geographically
placed at various different locations. This brings an-
other challenge that the generated traf�c must not only
show the same �ow-level behavior but also exhibit sim-
ilar delays. For the purpose of traf�c generation and
network delay emulation we employ tools such asHar-
poon[20] which is a �ow-level traf�c generator and a
successor toSURGE[8]. The Harpoon traf�c gener-
ation is based on �ve distributional parameters which
can be easily extracted from the net�ow data captured
at any vantage point in the Internet. One of the key fea-
tures of Harpoon which distinguishes it from its coun-
terparts, is that it relies on the system's underlying na-
tive TCP stack. For emulating end-to-end performance
characteristics of Internet we rely on emulation tools
such asDummynet[17] andNistNet[4]. These tools
provide the ability to emulate asymmetric DSL link
bandwidths.
A sample run of traf�c generated with heavy-tail �ow
distribution and a RTT of 150ms for a duration of 120
seconds is shown in Figure 5. This plot indicates that
the generated traf�c complies not only with the con�g-
urable average throughput but also exhibits burstiness
characteristics. This complementary usage of traf�c
generation and network emulation leverage Routerlab
hardware for more realistic network experimentation.

0 20 40 60 80 100 120 140

0
20

0
40

0
60

0

Bandwidth plot in Mbps

Time [1s scale]

T
ra

ffi
c 

ra
te

 [M
bp

s]

Average Throughput: 484.310

Figure 5: Generated Traf�c (Mbps) – Time scale 1sec

6.1 Traf�c monitoring and capturing

Monitoring the state of experiments is crucial for accu-
rate and reliable measurements. To this end, Routerlab
has enhanced capabilities for monitoring links via the
span port in switches and optical splitters. Moreover,
for experiment data capturing, Routerlab provides ded-
icated high volume storage devices. This data is then
analysed and used for post experimentation analysis.

6.2 Traf�c validation

It has been shown in the literature related to Internet
traf�c analysis that wavelet transformation [13] are the
effective means for the analysis of Long Range Depen-
dent – LRD traf�c and for the calculation of Hurst Pa-

rameter [6]. In order to validate Long Rage Depen-
dence we also rely on wavelet based energy estimation
for different timescales. Since LRD stems from differ-
ent ON-OFF sources, the wavelet energy spectrum re-
mains high even over very large time scales. Our gen-
erated traf�c is compliant with the previous reported
results as shown in Figure 6.

2 4 6 8 10 12 14

30
32

34
36

Scaling plot

Octave

 

2 3 4 5 6 7 8 9 10 11 12 13 14

Hurst value: 0.768750950346592

Figure 6: Scaling Plot - log log diagram

7 Summary and outlook

In this paper, we introduce the Routerlab, arouter cen-
tric testbed that re�ects macroscopic properties of the
Internet on a miniature scale. This is complemented by
a �exible traf�c generation framework that offers cus-
tomizable levels of synthetic and captured traf�c to be
introduced into the experiments, while ensuring they
mirror important properties of real Internet backbone
traf�c.
Another important element in the design of the Router-
lab is a vendor agnostic management platform, support-
ing a wide heterogeneous landscape of different enter-
prise and network devices. With the help of this frame-
work, the Routerlab can be extensively customized to
experiment requirements, from a free choice of uti-
lized operating system images and virtualized and non-
virtualized resources and virtual topologies down to
versioned and controlled changes to the underlying
physical topology, when unavoidable.
The Routerlab is under extensive use for a wide range
of experiments. To further improve experimenter expe-
rience we plan to add the following features in the near
future:
Experiment automation: Currently under develop-
ment, an improved experiment automation process,
will offer experimenters the opportunity to fully auto-
matically, con�gure, provision, and run experiments in
coordination with monitoring and capturing facilities,
then automatically collect results and input them into
user de�ned analysis frameworks.
Virtual Network integration: As Virtual Networks,
realized by OpenFlow and other technologies, become
an integral part of network architectures, we intend to



fully integrate VNet support into the Routerlab, allow-
ing for higher degrees of freedom in topology de�ni-
tion and automatic combination of virtualized and non-
virtualized testbeds.
Testbed federation:n the context of national and in-
ternational projects [1, 2, 3], several approaches and
architectures for automatic testbed federation are cur-
rently being discussed. We envision the Routerlab to
be fully integrated in some of these federations in the
future, opening its resources and management abilities
to experimenter outside of our research group.

References

[1] 4ward project.http://www.4ward.eu/ .

[2] Geni project.http://www.geni.net/ .

[3] German lab. http://www.german-lab.
de/ .

[4] Nist net home page.http://www-x.antd.
nist.gov/nistnet/ .

[5] Routerlab. http://net.t-labs.
tu-berlin.de/research/routerlab .

[6] P. Abry, P. Goncalves, and P. Flandrin. Wavelets,
spectrum analysis and 1/f processes. InWavelets
and Statistics, Lecture Notes in Statistics.

[7] T. Anderson, L. Peterson, S. Shenker, and
J. Turner. Overcoming the internet impasse
through virtualization.Computer, 38(4), 2005.

[8] P. Barford and M. Crovella. Generating repre-
sentative web workloads for network and server
performance evaluation. InSIGMETRICS, pages
151–160, 1998.

[9] A. Bavier, M. Bowman, B. Chun, D. Culler,
S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak. Operating sys-
tem support for planetary-scale network services.
In USENIX NSDI, 2004.

[10] A. Bavier, N. Feamster, M. Huang, L. Peterson,
and J. Rexford. In vini veritas: Realistic and con-
trolled network experimentation. InACM Sig-
comm, 2006.

[11] N. Beheshti and Y. Ganjali. Packet scheduling
in optical �fo buffers. In High-Speed Network-
ing Workshop (In Conjunction with IEEE INFO-
COM), 2007.

[12] S. Bhatia, M. Motiwala, W. Mühlbauer,
Y. Mundad, V. Valancius, A. Bavier, N. Feamster,
L. Peterson, and J. Rexford. Trellis: A platform
for building �exible, fast virtual networks on

commodity hardware. InACM ROADS Workshop,
2008.

[13] A. Feldmann, A. C. Gilbert, W. Willinger, and
T. Kurtz. The changing nature of network traf�c:
scaling phenomena.ACM Sigcomm CCR, 1998.

[14] A. Feldmann, L. Cittadini, W. Mühlbauer,
R. Bush, and O. Maennel. Hair: Hierarchical ar-
chitecture for internet routing. InACM ReArch
Workshop, 2009.

[15] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. Open�ow: enabling innovation in
campus networks.ACM Sigcomm CCR, 38(2),
2008.

[16] D. Raychaudhuri, M. Ott, and I. Secker. Orbit ra-
dio grid tested for evaluation of next-generation
wireless network protocols. InTRIDENTCOM,
2005.

[17] L. Rizzo. A simple approach to the evaluation
of network protocols. acm computer communica-
tions. ACM Sigcomm CCR, 2007.

[18] G. Schaffrath, C. Werle, P. Papadimitriou,
A. Feldmann, R. Bless, A. Greenhalgh, A. Wund-
sam, M. Kind, O. Maennel, and L. Mathy. Net-
work virtualization architecture: Proposal and ini-
tial prototype. InACM VISA Workshop, 2009.

[19] F. Schneider, J. Wallerich, and A. Feldmann.
Packet capture in 10-gigabit ethernet environ-
ments using contemporary commodity hardware.
In PAM, 2007.

[20] J. Sommers and P. Barford. Self-con�guring net-
work traf�c generation. InACM IMC, 2004.

[21] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environ-
ment for distributed systems and networks. In
USENIX OSDI, 2002.

[22] C. Wiseman, J. Turner, and P. Crowley. The open
network laboratory. InACM Sigcomm Demo Ses-
sion, 2009.

[23] A. Wundsam, A. Mehmood, A. Feldmann, and
O. Maennel. Improving network troubleshooting
using virtualization. Technical report, Technische
Universitaet Berlin, Fakultät Elektrotechnik und
Informatik, June 2009.

[24] A. Wundsam, A. Mehmood, A. Feldmann, and
O. Maennel. Network troubleshooting with
shadow vnets. InACM Sigcomm Demo Session,
2009.


